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Internal waves in a wedge-shaped region 

By D. G. HURLEY 
Department of Mathematics, University of Western Australia 

(Received 29 July 1969 and in revised form 31 March 1970) 

The Green’s functions are found for a line source of internal waves in a wedge 
of stratified fluid of constant Brunt-Vaisak frequency, and are used to discuss 
the diffraction of internal waves by a wedge in all cases when the vertex angle 
of the wedge of fluid exceeds the acute angle between a characteristic and the 
horizontal. Robinson’s (1  970) results are confirmed and extended. 

It is found that the diffracted waves are as important as the incident and 
reflected ones at  all points that lie within a quarter-wavelength or so of either 
characteristic that passes through the apex. Also, in cases when all the reflected 
waves are inclined forwards, the diffracted waves lead to a positive backscatter 
of energy. When the vertex angle of the fluid wedge is less than the character- 
istic angle, the diffraction problem appears to be ill-posed, and, instead, the 
motion due to a vibrating body in the wedge of fluid is considered. 

A general conclusion is that the so-called ray theory for internal waves, in 
which the incident and reflected waves alone are considered, has similar limita- 
tions to the geometrical theory of optics. Both theories involve the assumption 
that the typical dimensions in the problem are large compared to the wave- 
length. 

1. Introduction 
Many of the properties of internal waves are quite different from those of the 

more well-known waves, such as light waves and sound waves. For example, 
according to the Boussinesq approximation, the phase and group velocities of 
internal waves are mutually perpendicular. To understand the behaviour of in- 
ternal waves, it is highly desirable that there should be available an appreciable 
number of exact solutions that display their properties. The number of such 
solutions appears to be exceedingly small, even when the assumption of constant 
Brunt-Vaisala frequency is made. Robinson (1 969) and Larson (1 969) have 
solved the problem of an internal wave incident on a vertical barrier, and 
Wunsch (1968, 1969) has described certain special solutions involving internal 
waves in a wedge-shaped region. 

Robinson (1970) gave the solution to the problem o f  an internal wave incident 
on a wedge for restricted values of the wedge angle. On being shown this solution, 
it was not at  all apparent to the present author how it could be generalized to 
deal with more general wedge angles. This prompted the present investigation 
in which a somewhat different approach is taken. 
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98 D. G. Hurley 

In 9 2 the Green’s function is found for a source of waves in a wedge of arbitrary 
angle, and in subsequent sections it is used to discuss the diffraction of internal 
waves by wedges and a certain related problem for wedges of arbitrary angle. 

The problem considered is also of some interest in oceanography in its own 
right, since, to a first approximation, the region near the foot of a suboceanic 
mountain range is an obtuse-angled wedge a.nd the region above the continental 
shelf an acute-angled one. 

2. Basic analysis 
Suppose that stably stratified fluid, whose Brunt-Vaisala frequency, 

is constant, occupies the sector between two plane rigid walls OA and OB, OA 
being horizontal? and OB being inclined at  an angle 6, to it. Here po is the un- 
disturbed density, Oxy is a set of rectangular axes with Oy vertically upwards 
and 8, may have any value in the range (0,2n). 

Suppose, further, that motions are being produced in the fluid by oscillatory 
body forces whose components are X exp ( - iot) and Y exp ( - iwt ) ,  where t is 
the time. Then Euler’s equations of motion are 

av av av 1 ap 
at ax ay p ay 
-+u-+v-= ----g+Yexp 

the equation of continuity is 

*+- a (pu)+- a (pv) = 0, 
at ax aY 

- iot) - ew, (2.3) 

and the condition that the density of a fluid particle should remain constant 
gives 

aP ap ap 
at ax ay -+u-+v- = 0. 

The term --EW in (2.3) represents a small fictitious damping force proportional 
to the vertical velocity component, and is introduced for mathematical con- 
venience. The solution of a particular physical problem is then the limit as e 
tends to zero of the appropriate solution of (2.2) to (2.5). (See Lamb 1932, $248.) 

It may readily be shown that, if the motions are small and the Boussinesq 
approximation is made, the linear approximations to (2.2) to (2.5) imply that 
there exists a stream function @ exp ( - iot), such that 

t This restriction is not essential. It is a trivial matter to generalize the analysis that 
follows to  deal with cases when neither wall is horizontal. 
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and 

where is 
1-- 

N2 
= 2- w 

$ must also satisfy the boundary conditions, 

@ = O  on 8=0,6,, O < r < 0 0 ,  (2.9) 
where r,  6 are polar co-ordinates. 

imaginary parts of + satisfy 
We note that the homogeneous form of (2.7) implies that both the real and 

a4h a4h (( $ - 1)2 + $) g - 2 ($ - 1) 2 a  2 +-= ay4 0. (2.10) 

This equation is elliptic if E + 0, so that then 4 will be regular in both x and y 
(see, for example, Bers et al. 1964, p. 136), and analytic continuation may be 
used to extend its range of definition, a procedure we will employ frequently in 
what follows. 

Under the transformation 

(2.11) 
x = e p  cos q5, zy = e p  sin $, 

tan q5 = 7 tan 8, p = frlog(x2+72y2), 
(2.7) becomes 

Let (2.13) 

be the Fourier transform of + with respect to p. Then (2.12) implies 

where (2.15) 

Also, the boundary conditions (2.9) become 
- 
@ = 0 on # = 0 andon # = 4, = artan(Ttan8,). (2.16) 

The general solution of the homogeneous form of (2.14) is 
- + = cl( 1 + sin Z$)- t ( iw)+ c2( 1 - sin 2 $ ) t ( i w )  

= c,exp{iwp-iwlog (x+~y))+c,exp{iwp-iwlog (x-7y)], (2.17) 

using (2.11). Here, log (5 + qy) and log (x - 79) have branch points for x + cqy = 0 
and x - gy = 0. Each is taken to have its principal value on the positive Ox axis 
and analytic continuation, as described above, may be employed to determine 
the values throughout the 0x9 plane. Thus, 

log(x+yy) =logJs+qyl-imn, 

and log (x - 72) = log Ix - yyl+ inn, 
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m = 0, 

= 1, n-p < 8 < 2n-p,  

= 2, 2n-p  < 0 < Zn, 

n = 0,  o < e X p ,  

n+p < 0 < 2n, 

0 < 0 < n - p ,  

= 1, 

= 2, 

f% X 0 < n+p, 
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where 
(2.18) 

and ,LL = arcot 7. (2.19) 

By using conventional methods (see, for example, Sagan 1961, ch. IX), it can be 
shown that the Green's function o($,$s;w) for (2.14), subject to (2.16), is 
given by 

a($, $s; w) (cog 24,)i"exp [ - iw(p - ps)l 

where subscript B denotes values a t  any point on OB and subscript X values a t  a 
'source' point. 

It follows, from (2.7), (2.11) and the inversion formula for Fourier integrals, 
that 4 is given in terms of by 

(2.21) 

where 
a) 

4 v ( x ,  Y ;  xs ,  Y s )  = 2nwr -i 1 -* ~($,+~;w) (cos2$s)i"exp[-iw(p-ps)ldw. (2.22) 

For all values of 4, the expression (2.20) has simple poles a t  

w, = 2nn/C (n = & 1, & 2,  ...), (2.23) 

where 

and 

with residues 

(2.24) 

(2.25) 
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To evaluate (2.22) consider the caset 0 < 8, < p. Then, with 7 given by (2.8) 
the poles (2.23) lie close to the real axis in the first and third quadrants. When 
p < ps, the contribution to the integral from a large semicircle in the upper half 
plane is small, so that, by Cauchy’s theorem, 

where 

(2.27) 

(2.28) 

and use has been made of the result 

exp(in8) C -T = -log(l-exp(iO)). 
n = l  

- W  

$v = -2ni R,, 
n= -1 

If P ’ Ps, 

(2.30) 

(2.31) 

and the use of (2.30) again leads to (2.28). The identity of the two results is 
expected, since l l f v  satisfies the elliptic equation (2.10), and is thus regular in x 
and y. 

To demonstrate that the expression (2.28) for $v is unique, we must show that 
the homogeneous form of (2.12) has nonon-trivial acceptablesolutions. Now (2.17) 

(2.32) 
satisfies (2.16), only if w=w,, n = + l , f 2  ,..., 
where w, is given by (2.23). These values of w give rise to the eigensolutions R, 
given by (2.26)) so that the most general solution of the homogeneous form of 

$ H =  2’ (2.33) 

Now, if 8, > p, - 2ni/C has positive real part (except if OB equals n & p or 2n - p, 
in which case the real part is zero), and, referring to (2.26), we see that R, tends 
to infinity as x 5 qy tends to infinity, if n 2 1, and tends to infinity as x t- qy 
tends to zero, if n < - 1.  Since llf must be bounded in each of these limits, all the 
a, in (2.33) must vanish. Hence, (2.28) gives the unique solution. 

If 0 < 8, < p, - 2ni/C is pure imaginary if the damping coefficient B in (2.8) 
is zero. However, if E > 0, -2nilC has a positive real part, and similar argu- 
ments to those used above again give $H = 0. 

Equations (2.21) and (2.28) give the desired solution for an arbitrary distribu- 
tion of body forces. 

(2.12) that satisfies (2.9) is m 

n = - m  

t It may easily be verified that the resulting expression for +v, given by (2.28), satisfies 
all the required conditions and thus constitutes the solution to the problem for all values 
of e,. 
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3. Diffraction of internal waves by a wedge 

fluid there exists an incident wave 
Suppose now that at  large distances from the apex of the wedge of stratified 

$$ = U exp [ ik(x  sin 0 + y cos @Ilk, (3.1) 

where k is positive. Since time variations are given by the factor exp ( - i w t ) ,  
the phase velocity of the wave Cpi has magnitude w / k ,  and is in the direction of 
the wave-number vector, 

(3.2) ( k l , k 2 )  = (ksin8,kco~O). 

a- 
\ +i=Eexp U [ik(x sinp+y cosp)] 

+i=fexp [ik(x sinp --y cosp)] 

Y 

U $i=xexp [ik(-x sinp+y C O S ~ ) ~  a+ 

gI=xexp U [ ik(-x sinp--y cosp)] 

FIGURE 1. The phase and group velocities of the four possible incident waves 

$( = U exp [ik( k x sin p _+ y cos p ) ] / k ,  

and definition of the unit vectors 2, and G-. 

The condition that (3.1) should satisfy the homogeneous form of (2.7), and thus 

(3.3) 
represent a possible wave, is 

where ,u is the acute angle defined by (2.19) and (2.8) withe = 0. Equation (3.3) 
will be satisfied provided 

Cot20 = COt21U, 

cose = k cosp and sin0 = k sinp. (3.4) 

(3-5) 

Thus, for given p, there are four possible incident waves that are represented by 

= U exp [ik( & x sinp f y cosp) ] /k .  

The group velocity c,. of each of the waves (3.5) has magnitude N cos,u/k, 
and is perpendicular to kpi in the sense such that the horizontal components 
of cpi and cGi have the same sign. (See Phillips 1966, p. 175.) Figure 1 shows the 
phase and group velocities of each of the four waves given by (3.5). We shall 
describe the analysis for the case 

$i = U exp [ - i k ( x  sinp - y cosp)]/k, (3.6) 

The problem of the diffraction of an internal wave by a wedge has recently 
but only minor changes would be needed to deal with the other cases. 
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been treated by Robinson (1970) for the incident wave (3.6) and the case 
p < 8, < n-p. In  $ 3  we shall use the results of $ 2  to derive his solution in a 
form that holds provided only that 

p < 8, < 2n. (3.7) 

The case 0 < 6, < p will be considered in $5 .  
The fluid velocity corresponding to (3.6) is 

- i US+ exp [ - ik(x sin p - y cos p)], (3.8) 

so that U is the amplitude of the velocity fluctuation in the incident wave and 
the unit vector 8, is defined in figure 1. 

The stream function for the total motion is written 

?P = $.i+$, (3.9) 

where $ must satisfy the homogeneous form of (2.7) and the boundary conditions 

qb = - Uexp(-ik.rsinp)/k. (8 = 0, 0 < r < a), 

and $ = - Uexp[-ikrsin(pu6,)]/k (0 = BB, 0 < r < a). (3.10) 

We now show that $ can be expressed in terms of a distribution of sources 

If $v as given by (2.28) is multiplied by - iwy2/2, integrated with respect to ys 
on OA and OB. 

and differentiated with respect to xs, the result is the stream function, 

(3.11) 

a,, az, a3 and a4 are given by (2.29); and from this equation and (3.11) it follows 
that 

1 7  

$s + --log( i X+TY-Xs-7Ys 
47T x-yy-xs+7ys 

(3.12) 

provided the field point (x, y) is close to the point (zs, ys), at which the singularity 
is located. Equation (3.17) of Hurley (1969) shows that (3.12) gives the stream 
function for a source of strength cos wt at the point (xs, ys) in unbounded stratified 
fluid, so that (3.11) gives the flow due to the same source with the lines 8 = 0 
and 8 = 0, streamlines. 

Taking xs = t,, ys = 0 in (2.29) and (3.11) gives a unit source on OA: 

1 - exp ( - ia,) 
1 - exp ( - ia-) I 

, and a - = - l o g ( ~ ) . j  2n x+yy 
C where 

Taking xs = tB cos.OB, ys = tB sin 8, gives a unit source on OB: 

i l-exp[-iP+] 
$B = P,log ( 1 - exp [ - iB-] 

(3.13) 

I 
and V, = 9 tan 6,. 
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Now $A gives a normal velocity #(r - tA) on 8 = 0 and $, a normal velocity 
4S(r - tB)  on 8 = 8, (see Hurley 1969, Q 4) where Sdenotes the Dirac delta function. 
Thus, by (3.10), (3.13) and (3.14), 

where 
@ = @1++2+@3+$4,  

x log (1 - exp [ -?log (- k(x-”) )]) d7,, 
TB( 1 + WB) COB 8, 

U s i n ( f / * I , ~ ) / ~ ~  exp [i7, sin (8, - p)] 
$ 4 =  27rk 

and the changes of variables, 

have been made. 
7 A  = kt,, and T B  = kt,  

Each of the above integrals is of the type 

I = IOm exp (iRt) log ( 1 - exp [ - 7 log PI) dt, 

(3.16) 

(3.17) 

where, in the case 6 = 0, R is real and 

logp = log IpI +isn, (3.18) 

The only singularities of the integrand in (3.17) are branch points which occur 
where s is a positive or negative integer of zero. 

for 

or, by (2.24), t = 141 IKI-? (3.19) 

and amp t = m(s + N(m, + nB)>. 
Since the above value for amp t is an integral multiple of T ,  all the branch p0int.s 
lie on the real axis. 

In the case E + 0, y is given by (2.8) and then each p and the branch points 
given by (3.19) acquire imaginary parts. Let aj (j = 1,2, . .., r )  be the location 
of those that are displaced into the first quadrant and bj (j = 1’2, .. .,s) be the 
location of those that are displaced into the fourth quadrant. Then it follows 
from Jordan’s lemma and Cauchy’s theorem that 

logqlt = NC ( N  = 0, * 1,  ...), 

(3.20) I O+im 

1 =lo P ( t ) d t + J ,  P(t)dt  (R > O ) ,  

=so F(t )d t+J  F( t )d t  (R < O), 

j 2 

i rj 
0 - i m  

1-1 
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P(t) = exp (iRt) log ( 1 - exp [ - - 2;logg), 

and the contours Cj and rj are depicted in figure 2. 
The integrals along Cj and Fj can be resolved exactly. For on Cj, 

1% (1  - exp [ - log 91) = log (t - aj )  +f( t ) ,  

105 

(3.21) 

(3.22) 

where f ( t )  is regular on Cj, and hence does not contribute to the integral. This 
result, and the corresponding one for rj, give 

and 

(3.23) 

FIGURE 2.  Definition of contours Cj and Ti. 

3.1. The reflected waves 

@, as given by (3.15), consists of a linear combination of four integrals of the 
type (3.17). We now calculate the contributions to these integrals from the 
contours Cj or rj and find that these represent the reflected waves. 

Let $pa, p = 1 , 2 , 3 , 4 ,  denote the contribution to $p from the contour Cj or 
Fj, as the case may be. Consider $la. Equations (3.17) and (3.18) show that 

R = -  sinp, q = k(x-yy), and s = n, (3.24) for E = 0 ,  

by (2.18). The conditions (3.19) for branch points are therefore 

t = k/x-zyl 1KJ-N ( N  = 0, * 1, ...), (3.25) 

and n = -N(m,+n,). 

Since nB > 1 and n, >, n, the only values of N for which the second of equations 
(3.25) may be satisfied are N = 0 and N = - 1. If N = 0, then n = 0, so that 
0 < 8 < p, and the branch point is at 

t = k(x-yy). (3.26) 
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IfN = -1,thenn = m,+n,orn = nB = l ,andmB = O.TheconditionsmB = 0, 
nB = 1 imply p < 8, < n - p ,  and the condition n = 1 implies p < 8 < 8B. The 

(3.27) 
branch point is at  

Now for E + 0, T is given by (2 .8 ) )  and then the branch point (3 .26)  acquires a 
positive imaginary part and branch point (3 .27)  a negative one. Since R = - sinp 
is negative, a contribution to is obtained from the branch point (3.27),  
but not from the branch point (3 .26) .  Hence, if 

p 8, < n-pd, (3 .28)  

t = k K ( y y - x ) .  

= ( U / k )  exp [ikK(xsinp - y cosp)], 

= 0 elsewhere. (3 .29)  

If the inequality (3.28) is not satisfied, then $lB = 0. The values ~ f $ ~ ~ , p  = 2 , 3 , 4  
may be obtained in a similar way, and are given in table 1.  

The laws of reflexion for an internal wave by an inJinite plane are given by 
Phillips (1966, p. 176), and, using these, it  is a simple matter to establish the 
physical interpretation given in the last column of the table of the various terms. 
Here denotes the reflected wave, if the wave ljli is incident on the face 
OA(0B). $9RAB denotes the reflected wave, if the wave is incident on the 
face OB, and $9RBA denotes the reflected wave, if the wave $gB is incident on the 
face OA. 

Figure 3 depicts the sum of the incident and reflected waves for various values 
of 8B. The arrows in the figure are drawn in the directions of the group-velocities 
of the various waves and it is seen that in each case a particular wave is found 
in those regions that can be reached by rays whose direction at  any point is that 
of the appropriate group velocity. 

in p < 19 < S,, 

3.2.  The diffracted waves 

The stream function kg for the diffracted waves consists of the contributions to 
the integrals in (3 .15)  from the paths along the positive or negative imaginary 
axes. Using the changes of variable, 

rA = - ita, 

rB = fit,, sin(O,-p)~O, 
(3 .30)  

(3.31) 
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0 A 

B 

FIGURE 3. The incident and reflected waves for various values of 8B.  The arrows are drawn 
in the direction of the group velocity: 

(a )  p < e B  < n-p. The incident and reflected waves consist of: $(, 0 < 0 < &; @ g ~ ,  

( b )  n-p < 0, < r+p .  The incident and reflected waves consist of: $(, 0 < 0 < OB; 

(c) n+p < 6 s  < 2n. The incident and reflected waves consist of: @*, 0 < 0 < r+,u and 

0 < 0 < O B ;  @ZB, 0 < 0 < OB; @BAB, p < 6' < ee and @ZBA,  0 < 0 < p. 

@%A, 0 < 0 < n-p and $ZB, n-p < 8 < 0,. 

@BA, o < e < r-p. 
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We express $9 in the form 
@9 = $B+(U+) + $-9-(g-), 

109 

where 
and 

G+ = xsinp- ycosp, 
G- = xsinp+ ycosp, 

so that the velocity in the diffracted wave is 

&+3+ + $&-3-, 

(3.32) 

(3.33) 

(3.34) 

where the unit vectors 3, and 3- are defined in figure 1. 
Now (3.31) gives $g- as the sum of two functions and, if the changes of 

(3.35) 

are made, it is found, after a little reduction, that 

m exp ( - k ( v - (  t )  dt 
X , sin (O,-p) 5 0. 

(3.36) 
")I) 1 

- cosh (g [ nB + :]) 
Similarly, 

sinh (g [ ?aB + i]) U sgn CT+ 
$1 =----- 

g+ C 

exp(-kJg+Jt)dt 
X , sin (eB-p) 5 0. 

/:cos (:[, log t + in ( - 2n + nB- :)I) - cosh 6 [nB + ;I) 
(3.37) 

4. Numerical results and discussion for case 8, > p 

Equations (3.36) and (3.37) give the velocities in the diffracted waves for all 
points in the wedge of fluid and for all values of 8B > p. m and n therein axe given 
by (2.18), and in general these, and hence the fluid velocities, are discontinuous 
across the characteristics x f qy = 0 that pass through the apex of the wedge. 

Dependence on 8, occurs through 

- 2ni/C = a = a,+ia,, say, (4.1) 

where C is given by (2.24). Values of a are given in figure 4, where without loss 
of generality, and to facilitate discussion, we have taken ,LA = @. 

(4.2) 
The figure shows that 

011 > 1, 

if 0.829 < e B  < 2.313 approximately, and, for these values of 6,, the fluid 
velocities in the diffracted wave will be bounded on the line x - qy = 0 (Robinson 
1970). For all other values of 0,, 

and the fluidvelocities then become infinite as the lines x 

O 6 a , <  1, (4.3) 

qy = 0 are approached. 
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4.1. Case p < 8, < n-,a 
In this case, the diffracted waves given by (3.36) and (3.37) may be shown to be 
the same as those given by Robinson (1970). Since the reflected waves are the 
same, too, the two solutions are identical. The following discussion is therefore 
complimentary to that of Robinson. 

Figure 3(a) shows the incident and reflected waves and these together give 
zero normal velocity on OA and on OB. Hence, so too must the diffracted waves 
alone. Thus, for a point (x, 0) on OA, we have 

$~+(xsin,a)+$~-(xsinp)  = O (x > O ) ,  (4.4) 

so that? $&,(s) = - $ a 4  > 0- (4.5) 

FIGURE 4. Values of a = al + ia,. 

Similarly, for a point (rB cos S,, T B  sin SB))  on OB we have 

sin ( 8B - p) $&+ ( - rB sin [SB - p] ) - sin ( SB + p) $&- (rB sin [S, + p] ) = 0, (4.6) 

so that $&+(-4 = W-.&-(W (8 > 0). (4.7) 

Equations (4.5) and (4.7) enable the complete diffraction field to be expressed in 
terms of $&+(cr+) for negative values of its argument. This is depicted in figure 5 ,  

t The relations (4.5) and (4.7) may of course be deduced analytically from (3.36) and 
(3.37). 
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where I&+( - s) is denoted by ~ ( s ) .  The total diffractionvelocityis the vector sum 
of the three velocity fields that are depicted in the figure. 

Values of +;+ for negative values of its argument and various values of 8, 
in the range? (7i-12, rr -,u) are given in figure 6 where again we have taken ,u = n/4. 

When inequality (4.2) is satisfied the results exhibit the remarkable property 
that was pointed out by Robinson (1 970) : namely, 

$&+(O-) = iU(1 - -K))  (4.8) 

which is precisely minus the velocity at  (T+ = 0- due to $i + $3aB (see figure 3(a) 
and table 1). Also (4.5)) (4.7) and (4.8) give 

$&+@+I = iU(1-  P/m) (4.9) 

which is minus the velocity due to ?,hi+$3Bd. Hence, when (4.2) is satisfied, 
the total velocity is continuous across the line OC, of figure 3(a). 

FIGURE 5.  Structure of diffraction velocity field in case y < 0, < n-y. 

Results are given in figure 6 to illustrate the behaviour as OB approaches 
3n/4 (the inclination of the characteristic x + ~ y  = 0)) as this behaviour is of 
practical as well as theoretical interest (Fofonoff 1967). It follows from (3.37) 

(4.10) 
exp (ka; t )  dt 

that 
(a+ < O), s,” log 2 t  + p7r2 - ni log t 

lim = $& (a+) = - 
@ , - m i 4  

and this is included in the figure. For (4.10) to be a good approximation, we 

(4.11) must have 

so that 8, must be exceedingly close to &r. Results in figure 6(b)  illustrate this 

]log ($?7 - 8,) 1 < 279) 

point. 

7 Values for the range (y ,  gm) may ba deduced from those given in the figure by using 
the relation. 

where K A  = sin . (‘n+ A) and the asterisk denotes the complex conjugate. 
sin (an++) 
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FIGURE 6. The veloeitios in the diffracted wave for the case &n < 0~ < n-p. 
(a)  Real past of @b+. ( b )  Imaginary part of @&+. 
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4.2. Case r - p  < eB < n+p 
In this case the velocity due to the reflected waves is continuous across the 
line OC, of figure 3(b), but nevertheless there exists near it a diffracted wave 
whose velocities are given in figure 7 for various values of 0, in the ranget 
(n-p,n) .  Relations (4.5) and (4.7) hold and give $;-(5-) in terms of the results 
given. 

Using equation (A 13) of the appendix we may calculate the increase in the 
energy flux in the direction OC,, APcl, due to diffraction, and the results are 
given in figure 8. Diffraction leads to a positive backscatter of energy that 
increases as 8, approaches $7~. 

4.3. Case 8, = 2n 

In  this case, the internal wave is incident on a knife edge as shown in figure 9, 
and there will be diffracted waves near each of the lines OC,, OC,, OC, and OC,. 

(4.12) Equation (2.24) gives c = -47Ti, 

and we find that the velocities in the diffracted waves can be expressed in terms 
of Fresnel integrals. For the diffracted wave near OC,, we find that 

I1 "( 7Tx [ rx 
1 

$b+(g+) = -@&*+(-fl+, = -2 f(x)---g(x)-i f(x)--+g(x) ) (u+ > 0) 

f(x) = [i- X(x)] cos 

g(x) = [$ - C(x)]  cos 

(4.13) 

and 

(See Abramowitz & Stegun 1964, 3 7.) These values of $&+ are given in figure 10. 
We also find that the diffraction velocities near OC, are the same as those near 

OC,, i.e. that near OC,, 
(4.14) 

where $&+ is given by (4.13). For the wave near OC,, the velocities for negative 
values of (I+ are the same as those in the wave near OC, for negative values of u+. 
Also, the velocities near OC, for u+ positive are related to those near OC, for u- 
positive by the condition that together they should give zero normal velocity 
on OB. The velocities in the wave near OC, may be obtained in a similar manner. 

Equation (4.14) implies that the diffracted waves near OC, and OC, radiate the 
same power, and (4.13) and equation (A 13) of the appendix show that this 
power is 

t Values for the range (r, r - t y )  may be deduced by using the relation, 

169+(8)}OB=n.+a = -{@G+( -8)>0,=n-A* 

8 

(4.15) 
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FIGURE 7. The velocities in the diffracted wave for the case 7r - ,u < 0~ < n. 
(a) Real part of $"+. ( b )  Imaginary part of v !  ~. 
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approximately, for general values ofp, For comparison, the power in the incident 
wave per unit length normal to the group velocity is 7powU2/2k, so that the 
length in this direction that contains a power equal to  that radiated in either of 
the directions 00, and OC, is 0-05 wavelengths, approximately. 

\ 
\ 

\ 
\ 

\ 

.3? - 
4 

n 

@B 

FIGURE 8. Backscatter of energy for case n-p < Be < T. 

A 
B 

FIGURE 9. Notation for case SB = 2n. 

While this paper was being revised, Barcilon & Bleistein (1969) gave a solution 
to a problem closely related to that considered in this section. Their equation 
(3.16) gives the stream function for the diffraction of an inertial wave by a knife- 
edge; and, using results in Ambramowitz & Stegun (1967, $7) ,  we find it 
represents a motion very similar to that given by our (4.13). 

8-2 
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FIGURE 10. The velocities in the diffracted wave near OC, for the case 6~ = 2n. 

FIGURE 11. Problem considered in the case 0 < 0~ < p. 

5. The case 0 < 8, < p 
I n  this case, it is convenient to consider the motion produced by oscillatory 

forces ( X  exp [ - iwt] ,  Y exp [ - iwt])  that act throughout a region R as shown in 
figure 11. The stream function of the motion is given by (2.21) in which Pv is 
given by (2.28). 
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Consider a point (x, y) close to (x8, ys). Let 

so that x'/r8 and yf/rs are small, where 

is the distance from the disturbance point (xs,y8) to the vertex of the wedge. 
Then (2.28) becomes approximately 

which we recognize as a constant multiple of the stream function for an oscillatory 
vortex in an unbounded region. (See Hurley 1969, (3.18).) Hence, if the region R 
is small, the motion near it will be approximately the same as if the walls were 
absent. In particular, for a small, rigid oscillating body, one quarter of the power- 
output will be radiated in each of the four characteristic directions from it. 

FIGURE 12. Imaginary part of 4w77,ht.v €or case 0 < l3B < p. 

Far from the small body the accurate expression (2.28) for @v must be used. 
Calculations show that its imaginary part is piecewise constant, and takes the 
values given in figure 12. From this figure, it is clear that (2.28) correctly repre- 
sents the repeated reflexion of energy at the walls OA and OB. Hence, one half 
of the power output of the body will eventually arrive at 0, where there must 
therefore be an energy sink. This conclusion has also been reached by Greenspan 
(1969). 

It is also clear that the problem posed in $ 3  is inappropriate in the present 
case. This is because the amplitude of the incident wave was taken to be finite, 
which leads to an infinite influx of energy from infinity. To transmit this energy 
to 0, infinite velocities would be needed at all points a finite distance from 0 (see 
the appendix). Wunsch (1969) considered the motions corresponding to the eigen- 
solutions R, given by (2.26) for n positive. In  these solutions, the wave amplitude 
tends to zero a t  infinity, so that the above difficulty does not arise. 
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6. Limitations of ray theory for internal waves 
The above investigation makes clear certain limitations of the so-called ray 

theory for internal waves, in which only the incident and reflected waves are 
considered. To illustrate these limitations, we reconsider a problem treated by 
Longuet-Higgins (1969)t using ray theory methods. The problem is that of an 
internal wave incident on the simple saw-tooth roughness shown in figure 13(a), 
in the case when the slope of the faces is less than the slope of the characteristics. 
Since all the reflected waves are inclined to the left, there will be no back-scatter 
of energy at  all, according to the ray theory. 

FIGURE 13. Internal wave incident on simple saw-tooth roughness. ((I) Incident and 
reflected waves. (b )  Regions in which diffracted waves are important. 

However, our investigation shows that, for an isolated corner, the diffracted 
waves will be as important as the incident and reflected ones at all points within 
a quarter wavelength or so of either characteristic that passes through the corner. 
Further, this theory can be applied to the saw-tooth problem, provided the 
length scale of the roughness is large enough to prevent the overlapping of 
neighbouring regions in which diffraction effects are important. This situation is 
depicted in figure 13 (b); the diffraction regions occupy a sufficient fraction of 
the total for their effect to be significant. The results of $54.2 and 4.3 show that 
they give a positive back-scatter of energy, and this is consistent with the results 
of theories for roughness elements of general shape and small height. (See Cox & 
Sandstrom 1962; Hurley & Imberger 1969.) 

If the length scale of the roughness is much larger than the wavelength, the 
regions in which diffraction is important will only be a small fraction of the total. 
The over-all effects of diffraction will be small, and the ray theory approximately 

t Published while the present paper was being revised. 
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correct. On the other hand, if the length scale of the roughness is of the same 
order as, or smaller than, the wavelength diffraction effects will be important 
everywhere, and the ray theory as given by Longuet-Higgins will be un- 
satisfactory. The conditions for the ray theory to hold in this and similar 
problems are therefore like those for the applicability of the geometrical theory 
of optics. In  both cases, the length scales in the problem must be much larger 
than the wavelength. 

Appendix. Calculation of energy flux 
Consider a curve of length 1 joining any two points P and Q that lie in the fluid. 

Let qn be the normal velocity from right to left at  any point on the curve, and 
let p be the fluid pressure. Then the time average of the rate, at  which the fluid 
to the right of the curve does work on the fluid to the left of it, is 

where s is the arc-length. We shall refer to PpQ as the energy-flux in the sense 

of qn. 
If @ = F+(a+) + Y-(fl-), (A 2) 

then the integration of the linearized equations of motion gives 

where C is an arbitrary constant that we take to be zero. 
Equations (A 1) to (A 3) now give 

Now, let P and Q be two points at  either end of a long line, g- = constant, 
which cuts the line OC, of figure 3 ( b )  at a large distance from 0. Then, on PQ, 

approximately. Also, if we select P and Q to satisfy 

$d(V+P) = @ d V + Q ) 2  

then (A4) simplifies to  
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and Pps  is positive for an energy flux in the sense of OC,. Thus, 
W 

-Pi - qp,wU Re exp ( i k r + )  dcr+ - Irn FPQ = 
2 

where 

and is thus the energy flux associated with the incident wave. 
Integration by parts shows that the second term in (A 9) is 

VPn U I  

where 

Using (3.37) and carrying-out the integration with respect to  (T+, we find 

at I = -  CE sinh - 2zJr (t + i) (cos ([n/C] [2 log t - in]) - cosh [2n2/C]} 
at -u Ck sinh . - 2:2J~m (t-i){cos([n/C] [2logt+in])-cosh [2n2/C]} 

(A 12) (Z + 1 ) {COS ([n/C] [2 log z]) - cash [2~r~/C]) * 

ax 
sinh - - -_  - 

Since the integrand in (A 12) is regular in the right-half-plane, it follows by 
Cauchy's theorem that I = 0. Thus, the second term in (A9) is zero, and the 
change in the energy flux across PQ in the direction of OC,, due to the diffracted 
wave, is 
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